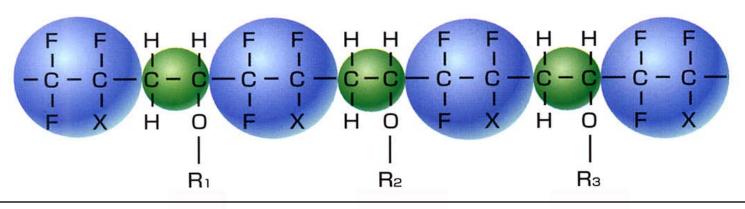
Fluoropolymer Coatings for Plastics

Presented at the 12th Annual Coatings for Plastics Symposium Lombard, IL June 2-4, 2009 Winn Darden **Business Manager, LUMIFLON® Resins AGC Chemicals Americas** Exton, PA wdarden@agcchem.com AGC

Properties of Fluoropolymers

- Excellent Weatherability
- Good Chemical Resistance
- Low Surface Energy
- Poor Solubility
- Difficult to Apply
 - Especially in the field
 - Especially on plastics



Fluoroethylene Vinyl Ether (FEVE) Resins

Vinyl Ether

FLUORINATED SEGMENTS: Weatherability, durability, chemical resistance

VINYL ETHER SEGMENTS: Gloss, solubility, crosslinking (-OH groups), adhesion, flexibility, toughness

Advantages of FEVE Coatings

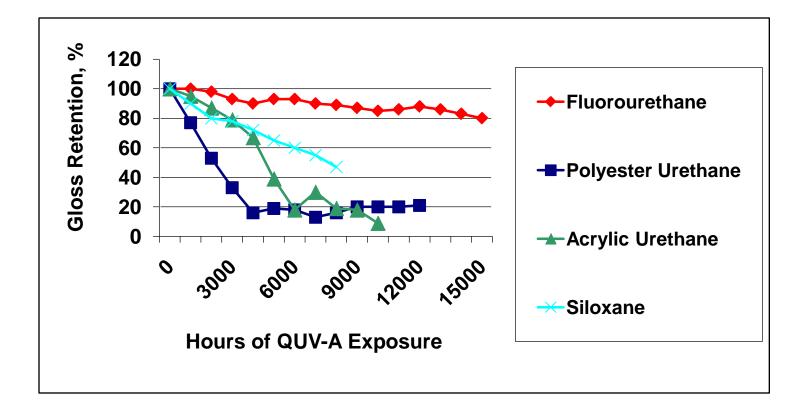
- OH Functional
 - Fluorourethanes
- Ambient or Elevated Temperature Cure
 - Field applied coatings
 - Shop applied coatings
 - Coatings for plastics
- Solvent Soluble

AGC

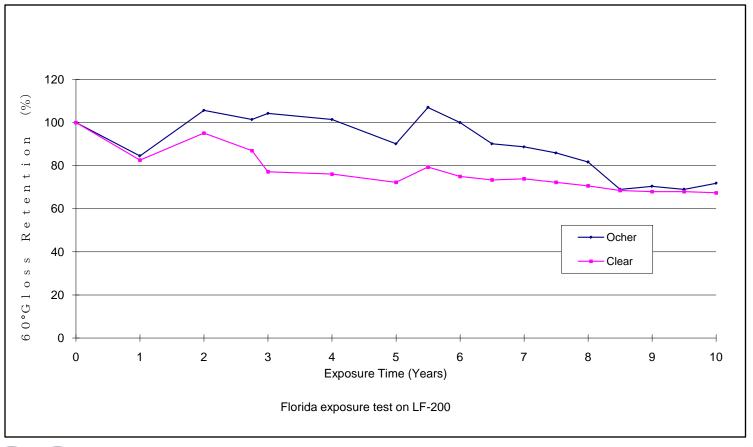
- Clean, crisp colors
- Wide range of gloss
- Fluoropolymer Segments
 - Ultra-weatherable

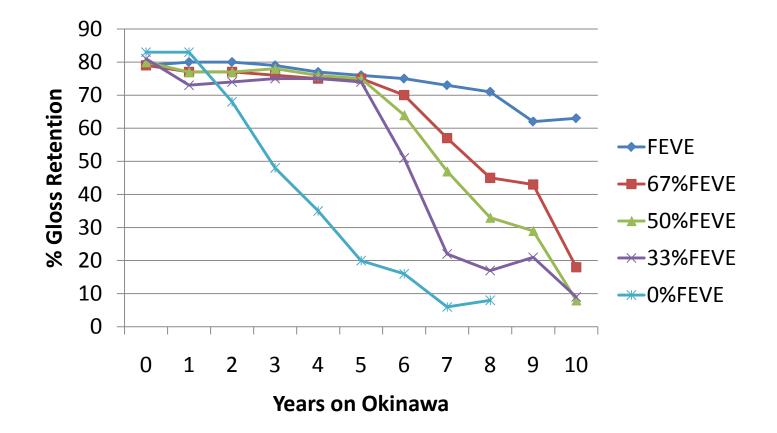
Types of FEVE Resins

- Solvent Based
 - Xylene
 - VOC/HAPS issues
- Solid Resins
 - Low VOC/HAPS free coatings
- Water Emulsions
 - Water resistance, weathering issues
- Water Dispersions
 - Excellent water resistance, weathering


Markets for FEVE Coatings

- Architectural
 - Monumental buildings
 - Aluminum extrusions-window frames
 - Aluminum panels
- Industrial Maintenance
 - Water towers
 - Bridges
- Aerospace
- Automotive


Weatherability of FEVE Coatings QUV-A Accelerated Weathering


Weatherability of FEVE Coatings South Florida Testing

Weatherability of FEVE Resins: Blends With Acrylic Resins

FEVE Coatings on Plastics

Dew Cycle Weatherometer Accelerated Weathering

Plastic Substrate	FEVE Coated?	Tensile Strength Retention, %		Elongation Retention, %	
		Irradiation in Dew Cycle Weatherometer, Hours			
		200	400	200	400
Polycarbonate	No	71%	62%	63%	55%
	Yes	118%	106%	123%	121%
Nylon 6	No	38%	44%	13%	3%
	Yes	97%	86%	89%	90%
Polypropylene	No	14%	12%	19%	9%
	Yes	103%	105%	102%	95%

Applications for FEVE Coatings on Plastics

- Architectural Components
 - Skylights
 - Wall and curtain wall systems
 - Stadium components
 - Awnings and canopies
 - Synthetic shingles
- Commercial Applications
 - Traffic signs
 - Exterior automotive plastics
 - Exterior graphics

Life Cycle Costs of FEVE Resins For Bridges

Coating Type	Process	Process Cost, \$/m ²	Initial Cost Ratio	Coating Life, Years	Cost/Year, \$/m ²
Chlorinated Rubber	Surface Preparation /Site Costs	\$37.56	2.4		
	Coating Cost	\$15.53	1.0		
	Total Cost	\$53.09	3.4	8	\$6.64
FEVE Urethane	Surface Preparation /Site Costs	\$43.06	2.8		
	Coating Cost	\$35.08	2.3		
	Total Cost	\$78.14	5.1	>21	\$3.72
Life Cycle Cost Ratio					0.56

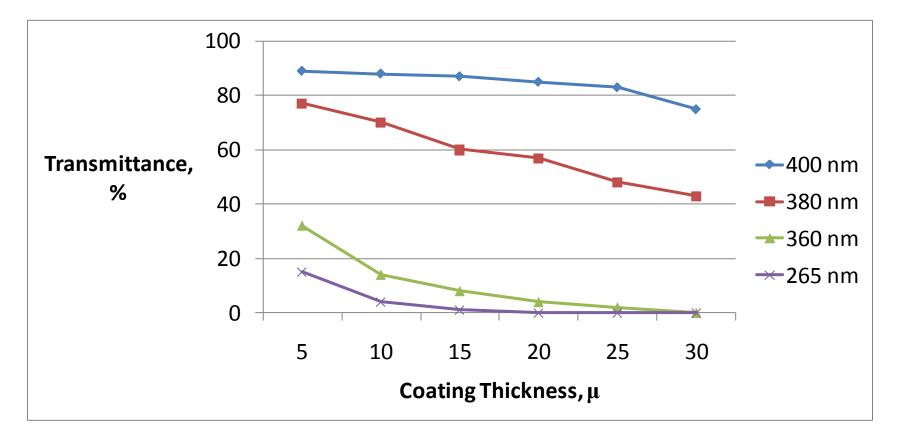
FEVE Coatings on FRP

- Characteristics of FRP
 - Strength/weight
 - Clarity to light
 - Yellowing, cracking, hazing over time
- FEVE Clear Coats for Protection of FRP
- Case Study: FEVE Coating on FRP
 - Weathering
 - Adhesion after weathering
 - Other effects on coating performance

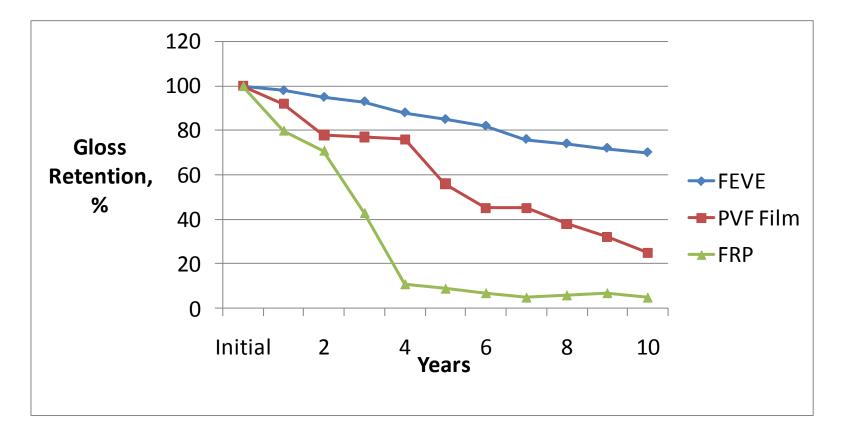
FEVE Coatings on FRP

- FEVE Coatings
 - Transparent to UV light
 - UVA stabilizers required
- Coating Properties Required
 - About 10 phr benzophenone derivative
 - Better UV absorption and bleed out characteristics
 - At least 25 μ thickness
 - Ensure complete surface coverage
 - Adequate light path for stabilizers

FEVE Coatings on FRP Effect of Coating Thickness

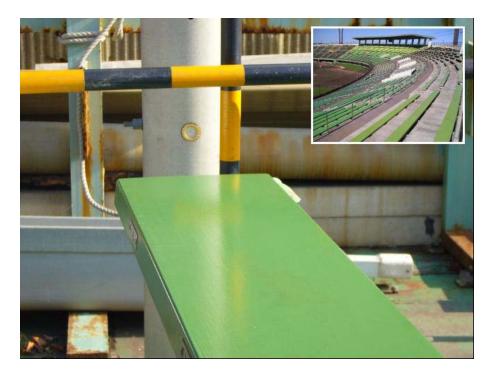

Table: Weatherometer Testing of FEVECoatings of Different Thickness

Exposure Time	2000	hrs.	5000 hrs.		
Property	Appearance	Adhesion* (Cross Cut)	Appearance	Adhesion*	
FEVE Coating, 25 μ	Excellent	100/100	Excellent	100/100	
FEVE Coating, 13 μ	Fair (slight yellowing)	100/100	Poor (yellowing)	0/100	


Light Transmittance of FEVE Clear Coat

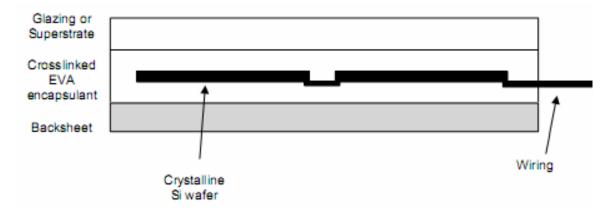
Weathering of FEVE Coating on FRP Itoman City, Okinawa, Japan

Weathering of FEVE Coated FRP Sunshine Weatherometer Test Coated FRP Uncoated FRP



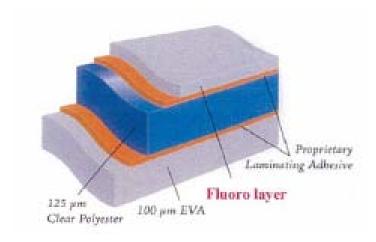
Performance of FEVE Coated FRP 20 Years, Tokyo, Japan

Performance of FEVE Coated FRP 15 Years, Marine Environment

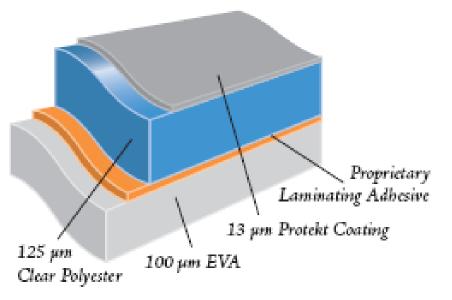


FEVE Coatings on PET Film

- PET Subject to Degradation by UV
 - Hydrolysis followed by delamination
- Application: Solar Cell Back Panels
- Solar Cell Back Panel
 - Physical protection for circuits and cell
 - Moisture protection
 - Electrical insulation
 - Color to blend into environment
 - Improved cell efficiency
 - Long life required
 - Ease of fabrication
 - Cost effective


FEVE Coatings on PET Film

- Laminate Configuration
 - PVF/PET/PVF (TPT)
 - PVF/PET/EVA (TPE)
 - Laminated films


AGC

- Supply limitations for PVF
- Performance limitations

FEVE Coatings on PET Film

- Use FEVE Coating to Replace PVF in the Laminate
- Applied to PET from Coating Bath
- Technology Leap

Advantages of FEVE Coatings in Solar Backpanels

- Meet Performance Requirements for Backpanels
 - Tensile strength
 - Dimensional stability
 - Damp heat aging
 - Weatherability
 - Dielectric properties
 - Flame spread
- Substantial Cost Reduction
 - 13 μ vs. 37.5 μ for PVF
- Manufacturing Flexibility
 - Panel width
 - Custom colors
- Power Boost of 5%

Conclusions

- FEVE Coatings In Use for 25 Years
- Offer Excellent UV Stability
- Successful Use on Plastics
- Life Cycle Cost Advantages
- Useful in Blends to Improve Weathering

References

- M. Temchenko, D. Avison, F. Mannarino, S. Lim, L. Campbell, M. Sullivan, J. Pratt, "Madico Backing Sheets," Presented at 1st International Photovoltaic Power Generation Expo, Tokyo, Japan, Feb. 2008.
- 2. Madico, Inc. Product Literature, "Photo-Mark Protekt® HD," 2007.
- 3. H. Roekens-Guibert, DuPont, "Next Generation Tedlar® PVF Film for Photovoltaic Module Backsheets," 12/07.
- A. Asakawa, "Performance of Durable Fluoropolymer Coatings," Presented at 7th Annual Nurnburg Congress, European Coatings Show, April, 2003.
- L. Capino, "Fluorourethane Coatings with Extreme Exterior Durability," Presented at the Paint & Coatings Expo Technical Program, Dallas, TX, 2007.

