# Developments in Fluoropolymer Resins For Long Life Coatings

Presented at the Chicago Society for Coatings
Technology Monthly Meeting

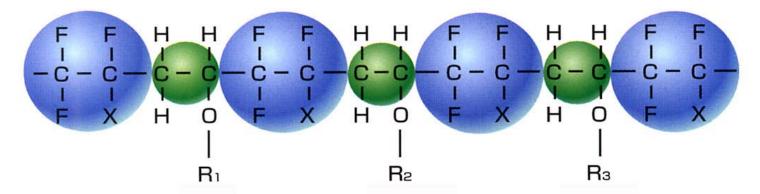
2008

Winn Darden
Business Manager, LUMIFLON® Resins
AGC Chemicals Americas
Exton, PA
wdarden@agcchem.com





## Fluoropolymers in Coatings


- Characteristics of Fluoropolymers
  - Excellent weatherability
  - Good chemical resistance
  - Low surface energy
  - Poor solubility
  - Difficult to apply
- PVDF Coatings
  - Coil coating
- Market Needs
  - Ambient cure
  - Easy to apply
  - Physical properties close to familiar coatings





#### Fluoroethylene Vinyl Ether (FEVE) Resins

- Fluoro Ethylene
  - Vinyl Ether

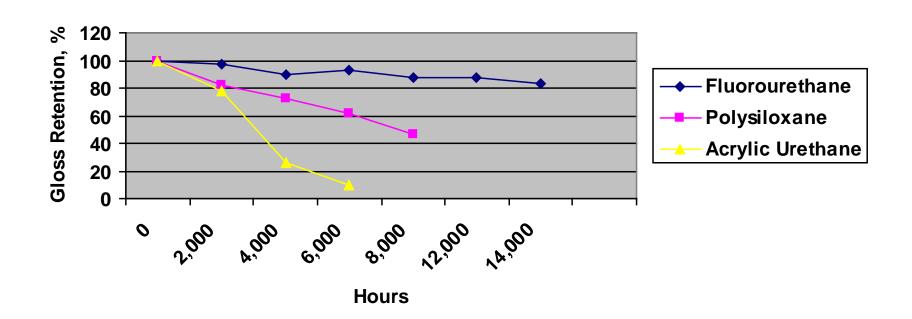


FLUORINATED SEGMENTS: Weatherability, durability, chemical resistance

VINYL ETHER SEGMENTS: Gloss, solubility, crosslinking

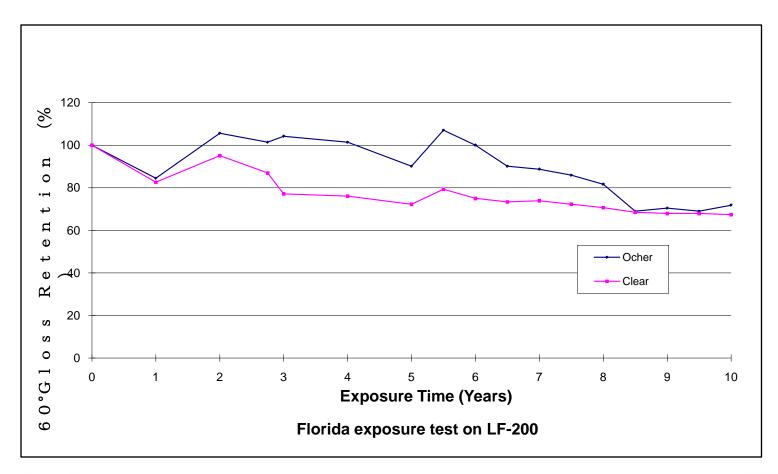





## **Advantages of FEVE Based Coatings**

- Ambient Cure
  - Field applied coatings
- OH Functional
  - Fluorourethanes
- Solvent Soluble
  - Clean, crisp colors
  - Wide range of gloss
- Fluoropolymer Segments
  - Ultra-weatherable
  - Corrosion resistance






# Weathering of FEVE Coatings QUV-A Test (ASTM D4587)





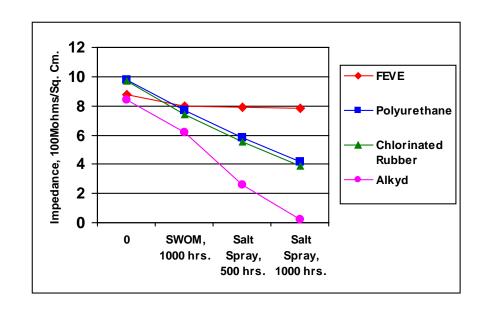
# Weathering of FEVE Resin Topcoats South Florida Weathering










# Comparative Weathering of Fluorourethane Topcoat

| Test Site     | Test<br>Duration<br>Years | Topcoat<br>Type     | Initial<br>µm | Final<br>µm    |
|---------------|---------------------------|---------------------|---------------|----------------|
| Suruga<br>Bay | 16                        | Acrylic<br>Urethane | 25            | 0 (13<br>yrs.) |
| Suruga<br>Bay | 16                        | Fluoro-<br>Urethane | 25            | 21             |

# Prevention of Corrosion with FEVE Resin Topcoats

#### **Electrochemical Impedance Spectroscopy**

- Coating System Tested
  - Zinc rich primer/epoxy/topcoat
- Shows Effectiveness of Topcoat in Preventing Corrosion
- Accelerated Weathering Followed by Salt Fog Test
- Smaller Change, Better Corrosion Resistance



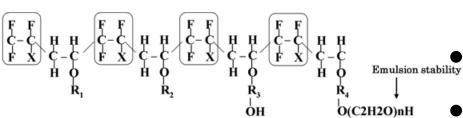


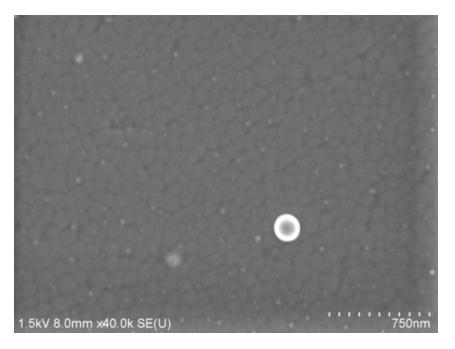
## **Types of FEVE Resins**

- Solvent-Based
  - Dissolved in xylene
  - Difficult to meet VOC/HAPS regulations
- Develop New Resin Forms For New Standards
- Solid Resins
  - Powder coatings
- Water Emulsions
- New Water-Based Resin






#### **FEVE Solid Resins**


- Same Performance as Solvent Based Resins
  - Weatherability
  - Corrosion resistance
- Soluble in Exempt Solvents
  - Oxsol 100
  - T-butyl acetate
  - Acetone
- Soluble in: Propylene Glycol Ethers, Esters, Ketones
- Meet 100 g/l California Standard for Industrial Maintenance Coatings

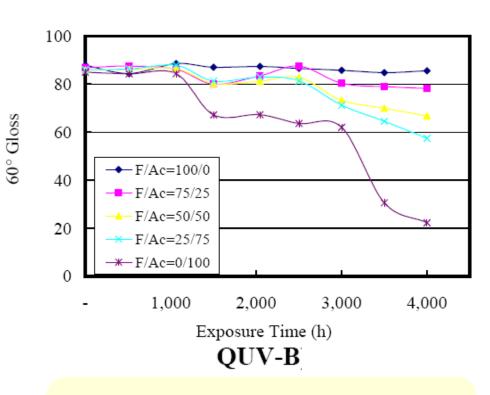




#### **FEVE Water Emulsions**








- Modified structure for emulsion stability
  - High molecular weight
  - Film forming via coalescence
- Affects film properties
  - Water resistance
  - Weathering
  - Adhesion
  - Permeability
- Problems at 50 g/l VOC?



#### **FEVE Water Emulsions**

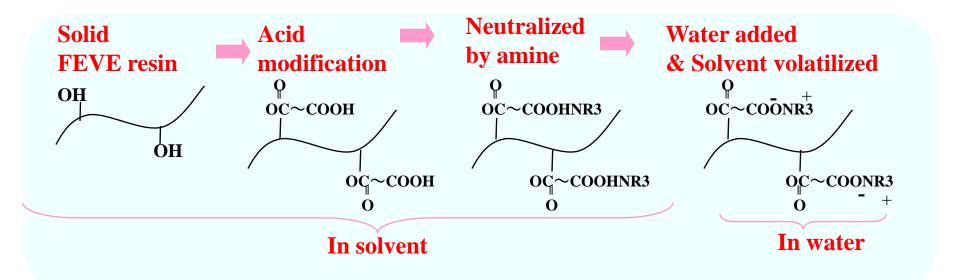
- Used in Blends With Standard Resins
  - Improved weatherability
  - Improve gloss and color retention



Blend of Single Component FEVE Water Emulsion with Primal® PR-1042 (Rohm & Haas)






#### **FEVE Water Based Resins**

- Need for Water-Based Resin With Properties Matching Solvent-Based Resins
  - Water resistance
  - Weatherability
- Minimize Changes to FEVE Polymer
  - Less modification, better properties
- FEVE Water Dispersion





# FEVE Water Dispersions Producing Dispersions

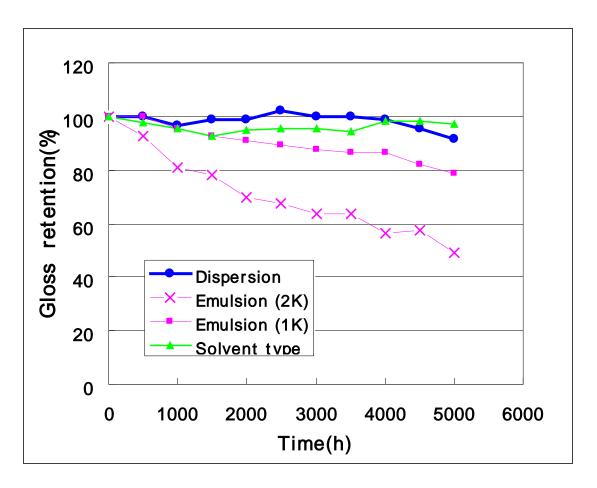






# **FEVE Water Dispersions Typical Physical Properties**

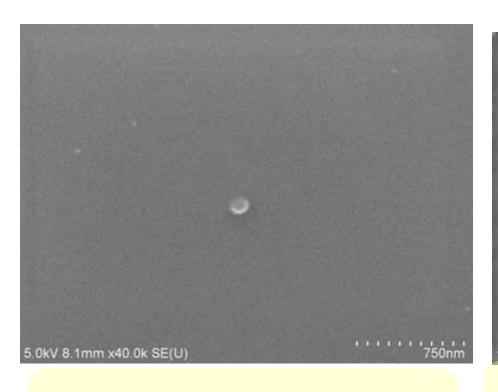
| Physical Property                       | Value              |  |  |
|-----------------------------------------|--------------------|--|--|
| Appearance                              | Milky White Liquid |  |  |
| Solids, wt. %                           | 40%                |  |  |
| рН                                      | 7.4                |  |  |
| Particle Diameter, μm                   | 145                |  |  |
| Minimum Film Forming<br>Temperature, °C | 27                 |  |  |
| Acid Value, mg KOH/g-polymer            | 15                 |  |  |
| Hydroxyl Value, mg KOH/g-<br>polymer    | 85                 |  |  |






## **Properties of FEVE Dispersion Coatings**

| Property              | Test<br>Method                                   |                                            | FEVE<br>Dispersion,<br>2K | FEVE<br>Emulsion,<br>2K | FEVE<br>Solvent,<br>2K |
|-----------------------|--------------------------------------------------|--------------------------------------------|---------------------------|-------------------------|------------------------|
| Gloss, 60°            | ISO 2813                                         |                                            | 88                        | 78                      | 90                     |
| Pencil<br>Hardness    | ASTM D<br>3363                                   | Gouge                                      | 4H                        | 4H                      | 3H                     |
| Pendulum<br>Hardness  | ASTM D<br>4366                                   |                                            | 79                        | 75                      | 80                     |
| Impact<br>Resistance  | ASTM D<br>2794<br>Diameter=0.<br>5"              | Intrusion<br>0.5 kg<br>Extrusion<br>0.5 kg | >1.0<br>>1.0              | 1.0                     | >1.0<br>>1.0           |
| Cross Cut<br>Adhesion | ASTM D<br>3359                                   |                                            | 5B                        | 5B                      | 5B                     |
| Water<br>Resistance   | ISO 2812,<br>40 C, 24 h<br>Cross Cut<br>Adhesion |                                            | 4B                        | 3B                      | 5B                     |
| GC                    | Blistering                                       |                                            | No blistering             | Medium<br>blisters      | No<br>blistering       |


# Comparative Weathering of FEVE Water Dispersions (QUV-B)







## **SEM: FEVE Dispersion vs. Emulsion**





Dispersion

**Emulsion** 





## **Markets for Fluorourethane Coatings**

- Architectural Markets
  - Monumental buildings
  - Aluminum extrusions
  - Coil coatings
- Aerospace Coatings
  - Military: C-17, C-5
  - Commercial and general aviation
- Industrial Maintenance Coatings
  - Difficult to paint structures: bridges, water towers
- Automotive
- Specialty Markets
  - Solar panels
  - Wind towers





## **Applications for FEVE Coatings**



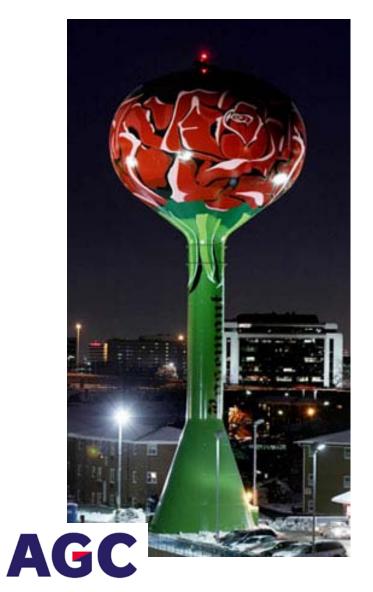


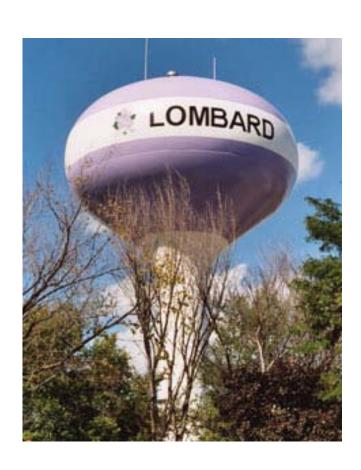




# **Applications for FEVE Coatings**










# **Applications for FEVE Coatings**







#### **Conclusions**

- Fluorourethanes Impart
  - Fluoropolymer characteristics
  - Excellent weatherability
  - Corrosion resistance
- FEVE Resins in Use for More Than 25 Years
  - Required for bridge topcoats in Japan
  - Estimated life of 60 years
  - Lower life cycle costs
- New Resins Meet Changing Environmental Regulations
- FEVE Coating Life Matches Infrastructure Life

