

"FEVE Fluoropolymer Emulsions for Performance Improvement in Architectural Coatings"

Bob Parker 29th Western Coatings Symposium

FEVE Fluoropolymer Resins

- "FEVE" is abbreviation for "Fluoroethylene Vinyl Ether" resins for coatings
 - Known for their high performance properties:
 - 1) Exceptional resistance to UV degradation
 - 2) Superior Chemical Resistance
 - 3) Excellent Thermal Resistance
 - Known for their unique formulation properties: 1) Solvent soluble

2) Can be cured at ambient temperature with isocyanates

3) Can achieve high gloss formulations

Fluoroethylene Vinyl Ether (FEVE) Resins

Fluoro Ethylene

Vinyl Ether

FLUORINATED SEGMENTS: Weatherability, durability, chemical resistance

VINYL ETHER SEGMENTS: Gloss, solubility, crosslinking

Commercial Types of "FEVE" Resins:

 Solvent soluble resins – uses organic solvents for viscosity reduction; predominantly cured with isocyanates; available as resin solutions or as 100% solid resins

2) Water-based emulsions – use vinyl ether macromonomers containing polyoxyethylene (EO) units to create stable emulsions

3

FEVE Water-borne Emulsions		
* * * * * * * * * * * *	FE-4300	FE-4500
Solids (Wt.)	50%	50%
pН	7 to 9	7 to 9
Specific Gravity	1.13	1.17
MFT	35°C.	28°C.
Hydroxyl Value	10	13

4 copyright© AGC Chemicals All Right Reserved

White House Paint Formulation Properties		
Solids (Volume)	32%	
pН	9.0 to 9.5	
TiO₂ Choice	TiPure R-706	
PVC	22	
Thickeners	both cellulosic and associative	
60° Gloss Range	50-65	
VOC	1.24 #/gal. or 150 g/liter	

Testing procedure #1:

- 1) Blending of FEVE emulsions and 4 different acrylic emulsions to evaluate stability (3 weeks in 140°F. oven)
- 2) Manufacture of 3 *White House Paint* formulations for each acrylic emulsion:
 a. Binder = 100% Acrylic Emulsion

b. Binder = 50% Acrylic Emulsion + 50% FE-4300 (FEVE Emulsion)

c. Binder = 50% Acrylic Emulsion + 50% FE-4500 (FEVE Emulsion)

- 3) Stability testing of all formulations (6 weeks in 120°F. oven)
- 4) Preparation of test panels (primed AI panels coated with 4 wet mils of coating)
- 5) QUV Weatherometer Exposure (UVA 340 Bulbs used)
 - a. Test Cycle = 8 hours UV light @ 60°C. + 4 hours condensation @ 50°C.

9

Red House Paint Formulation Properties		
Solids (Volume)	36%	
pН	9.0 to 9.5	
Pigment Choice	Organic Red + Phthalo Blue (trace)	
PVC	6.5	
Thickeners	both cellulosic and associative	
60° Gloss Range	50-65	
VOC	1.24 #/gal. or 150 g/liter	

Testing procedure #2:

- 1) Choose Acrylic Emulsion #3 as blending resin for Red HP formulation.
- 2) Manufacture of 6 *Red House Paint* formulations:
 - a. Binder = 100% Acrylic Emulsion
 - b. Binder = 50% Acrylic Emulsion + 50% FE-4500 (FEVE Emulsion)
 - c. Binder = 60% Acrylic Emulsion + 40% FE-4500 (FEVE Emulsion)
 - d. Binder = 70% Acrylic Emulsion + 30% FE-4500 (FEVE Emulsion)
 - e. Binder = 80% Acrylic Emulsion + 20% FE-4500 (FEVE Emulsion)
 - f. Binder = 90% Acrylic Emulsion + 10% FE-4500 (FEVE Emulsion)
- 3) Preparation of test panels (primed AI panels coated with 4 wet mils of coating)
- 4) QUV Weatherometer Exposure (UVA 340 Bulbs used)
 - a. Test Cycle = 8 hours UV light @ 60°C. + 4 hours condensation @ 50°C.

White DTM I/M Paint Formulation Properties			
Solids (Volume)	38%		
FEVE Emulsion	FE-4300		
pН	9.0 to 9.5		
TiO₂ Choice	TiPure R-706		
PVC	18		
Thickeners	associative-type		
60° Gloss Range	60-80		
VOC	1.24 #/gal. or 150 g/liter		

15 copyright© AGC Chemicals All Right Reserved

Testing procedure #3:

- 1) Choose 3 different acrylic emulsions from 2 manufacturers as blending resins for White DTM I/M Formulation. These acrylic emulsions are targeted for architectural metal finishes market.
- 2) Manufacture of 2 *White DTM I/M Paint* formulations:
 - a. Binder = 100% Acrylic Emulsion
 - **b.** Binder = 50% Acrylic Emulsion + 50% FE-4300 (FEVE Emulsion)
- 3) Preparation of test panels (primed AI panels coated with 4 wet mils of coating)
- 4) QUV Weatherometer Exposure (UVA 340 Bulbs used)
 - a. Test Cycle = 8 hours UV light @ 60°C. + 4 hours condensation @ 50°C.

Black DTM I/M Paint Formulation Properties		
Solids (Volume)	36%	
FEVE Emulsions	FE-4300 and FE-4500	
pН	9.0 to 9.5	
Pigment Choice	Tint-Ayd CW5331 Masstone Black	
PVC	2.7	
Thickeners	associative-type	
60° Gloss Range	60-80	
VOC	1.24 #/gal. or 150 g/liter	

 20° copyright© AGC Chemicals All Right Reserved

Testing procedure #4:

- 1) Choose Acrylic Emulsion # 5 and Acrylic Emulsion # 6 as blending resins for Black DTM I/M Formulation.
- 2) Manufacture of 3 *Black DTM I/M Paint* formulations for each Acrylic:
 - a. Binder = 100% Acrylic Emulsion
 - **b.** Binder = 50% Acrylic Emulsion + 50% FE-4300 (FEVE Emulsion)
 - c. Binder = 50% Acrylic Emulsion + 50% FE-4500 (FEVE Emulsion)
- 3) Preparation of test panels (primed AI panels coated with 8 wet mils of coating)
- 4) QUV Weatherometer Exposure (UVA 340 Bulbs used)
 - a. Test Cycle = 8 hours UV light @ 60°C. + 4 hours condensation @ 50° C.

 $22 \quad \mathsf{copyright} {\small {}^{\tiny \texttt{O}} \mathsf{AGC}} \; \mathsf{Chemicals} \; \; \mathsf{AII} \; \mathsf{Right} \; \mathsf{Reserved} \\$

Testing procedure #5:

- 1) Choose Acrylic Emulsion # 5 and Acrylic Emulsion # 6 as blending resins for Black DTM I/M Formulation.
- 2) Manufacture of 3 *Black DTM I/M Paint* formulations for each Acrylic:
 - a. Binder = 100% Acrylic Emulsion
 - **b.** Binder = 80% Acrylic Emulsion + 20% FE-4300 (FEVE Emulsion)
 - c. Binder = 80% Acrylic Emulsion + 20% FE-4500 (FEVE Emulsion)
- 3) Preparation of test panels (primed AI panels coated with 8 wet mils of coating)
- 4) QUV Weatherometer Exposure (UVA 340 Bulbs used)
 - a. Test Cycle = 8 hours UV light @ 60°C. + 4 hours condensation @ 50° C.

 26° copyright© AGC Chemicals All Right Reserved

Continuation of Project:

- 1) Testing of 50 g/liter House Paint Formulations
- 2) Testing of tinted Deep Base DTM I/M Formulation with *lower percentages of FEVE emulsions* as the binder
- 3) Testing of *Clear Hi-Gloss Concrete Sealer Formulation* with the FEVE emulsions replacing a percentage of the acrylic emulsion

Conclusion:

Inclusion of FEVE emulsions in architectural coating formulations can increase gloss retention and therefore prolong the aesthetic properties and the film integrity of these coatings, thereby increasing their life cycle and increasing the time between recoating exterior structures.

 30° copyright© AGC Chemicals All Right Reserved

Thank you for your Attendance!

31 copyright© AGC Chemicals All Right Reserved